Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 6(2): 290-305, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798478

RESUMO

Apelin is an endogenous peptide that is involved in many diseases such as cardiovascular diseases, obesity, and cancer, which has made it an attractive target for drug discovery. Herein, we explore the penultimate and final sequence positions of [Pyr1]-apelin-13 (Ape13) via C-terminal N α-alkylated amide bonds and the introduction of positive charges, potentially targeting the allosteric sodium pocket, by assessing the binding affinity and signaling profiles at the apelin receptor (APJ). Synthetic analogues modified within this segment of Ape13 showed high affinity (K i 0.12-0.17 nM vs Ape13 K i 0.7 nM), potent Gαi1 activation (EC50 Gαi1 0.4-0.9 nM vs Ape13 EC50 1.1 nM), partial agonist behavior disfavoring ß-arrestin 2 recruitment for positively charged ligands (e.g., 49 (SBL-AP-058), EC50 ß-arr2 275 nM, E max 54%) and high plasma stability for N-alkyl ligands (t 1/2 > 7 h vs Ape13 t 1/2 0.5 h). Combining the benefits of the N α-alkylated amide bond with the guanidino substitution in a constrained ligand led to 63 (SBL-AP-049), which displayed increased plasma stability (t 1/2 5.3 h) and strong reduction of ß-arrestin 2 signaling with partial maximal efficacy (EC50 ß-arr 864 nM, E max 48%), significantly reducing the hypotensive effect in vivo.

2.
J Med Chem ; 65(1): 531-551, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34982553

RESUMO

We previously reported a series of macrocyclic analogues of [Pyr1]-apelin-13 (Ape13) with increased plasma stability and potent APJ agonist properties. Based on the most promising compound in this series, we synthesized and then evaluated novel macrocyclic compounds of Ape13 to identify agonists with specific pharmacological profiles. These efforts led to the development of analogues 39 and 40, which possess reduced molecular weight (MW 1020 Da vs Ape13, 1534 Da). Interestingly, compound 39 (Ki 0.6 nM), which does not activate the Gα12 signaling pathway while maintaining potency and efficacy similar to Ape13 to activate Gαi1 (EC50 0.8 nM) and ß-arrestin2 recruitment (EC50 31 nM), still exerts cardiac actions. In addition, analogue 40 (Ki 5.6 nM), exhibiting a favorable Gα12-biased signaling and an increased in vivo half-life (t1/2 3.7 h vs <1 min of Ape13), produces a sustained cardiac response up to 6 h after a single subcutaneous bolus injection.


Assuntos
Apelina/análogos & derivados , Apelina/farmacologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/efeitos dos fármacos , Coração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Apelina/farmacocinética , Receptores de Apelina/efeitos dos fármacos , Arrestina/efeitos dos fármacos , Células HEK293 , Meia-Vida , Humanos , Injeções Subcutâneas , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/farmacologia , Peso Molecular
3.
Front Pharmacol ; 12: 709467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385922

RESUMO

Objectives: Arterial hypertension, when exacerbated by excessive dietary salt intake, worsens the morbidity and mortality rates associated with cardiovascular and renal diseases. Stimulation of the apelinergic system appears to protect against several circulatory system diseases, but it remains unknown if such beneficial effects are conserved in severe hypertension. Therefore, we aimed at determining whether continuous infusion of apelinergic ligands (i.e., Apelin-13 and Elabela) exerted cardiorenal protective effects in spontaneously hypertensive (SHR) rats receiving high-salt diet. Methods: A combination of echocardiography, binding assay, histology, and biochemical approaches were used to investigate the cardiovascular and renal effects of Apelin-13 or Elabela infusion over 6 weeks in SHR fed with normal-salt or high-salt chow. Results: High-salt intake upregulated the cardiac and renal expression of APJ receptor in SHR. Importantly, Elabela was more effective than Apelin-13 in reducing high blood pressure, cardiovascular and renal dysfunctions, fibrosis and hypertrophy in high-salt fed SHR. Unlike Apelin-13, the beneficial effects of Elabela were associated with a counter-regulatory role of the ACE/ACE2/neprilysin axis of the renin-angiotensin-aldosterone system (RAAS) in heart and kidneys of salt-loaded SHR. Interestingly, Elabela also displayed higher affinity for APJ in the presence of high salt concentration and better resistance to RAAS enzymes known to cleave Apelin-13. Conclusion: These findings highlight the protective action of the apelinergic system against salt-induced severe hypertension and cardiorenal failure. As compared with Apelin-13, Elabela displays superior pharmacodynamic and pharmacokinetic properties that warrant further investigation of its therapeutic use in cardiovascular and kidney diseases.

4.
Biomed Pharmacother ; 141: 111861, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34229249

RESUMO

The current opioid crisis highlights the urgent need to develop safe and effective pain medications. Thus, neurotensin (NT) compounds represent a promising approach, as the antinociceptive effects of NT are mediated by activation of the two G protein-coupled receptor subtypes (i.e., NTS1 and NTS2) and produce potent opioid-independent analgesia. Here, we describe the synthesis and pharmacodynamic and pharmacokinetic properties of the first constrained NTS2 macrocyclic NT(8-13) analog. The Tyr11 residue of NT(8-13) was replaced with a Trp residue to achieve NTS2 selectivity, and a rationally designed side-chain to side-chain macrocyclization reaction was applied between Lys8 and Trp11 to constrain the peptide in an active binding conformation and limit its recognition by proteolytic enzymes. The resulting macrocyclic peptide, CR-01-64, exhibited high-affinity for NTS2 (Ki 7.0 nM), with a more than 125-fold selectivity over NTS1, as well as an improved plasma stability profile (t1/2 > 24 h) compared with NT (t1/2 ~ 2 min). Following intrathecal administration, CR-01-64 exerted dose-dependent and long-lasting analgesic effects in acute (ED50 = 4.6 µg/kg) and tonic (ED50 = 7.1 µg/kg) pain models as well as strong mechanical anti-allodynic effects in the CFA-induced chronic inflammatory pain model. Of particular importance, this constrained NTS2 analog exerted potent nonopioid antinociceptive effects and potentiated opioid-induced analgesia when combined with morphine. At high doses, CR-01-64 did not cause hypothermia or ileum relaxation, although it did induce mild and short-term hypotension, all of which are physiological effects associated with NTS1 activation. Overall, these results demonstrate the strong therapeutic potential of NTS2-selective analogs for the management of pain.


Assuntos
Analgésicos não Narcóticos/farmacologia , Compostos Macrocíclicos/farmacologia , Receptores de Neurotensina/efeitos dos fármacos , Analgésicos não Narcóticos/síntese química , Analgésicos não Narcóticos/farmacocinética , Analgésicos Opioides/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Ciclização , Relação Dose-Resposta a Droga , Desenho de Fármacos , Sinergismo Farmacológico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Inflamação/complicações , Inflamação/tratamento farmacológico , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/farmacocinética , Masculino , Morfina/farmacologia , Medição da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Especificidade por Substrato
5.
Cancer Metastasis Rev ; 40(2): 427-445, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33973098

RESUMO

Breast and prostate cancers have a great propensity to metastasize to long bones. The development of bone metastases is life-threatening, incurable, and drastically reduces patients' quality of life. The chemokines CCL2 and CXCL12 and their respective receptors, CCR2 and CXCR4, are central instigators involved in all stages leading to cancer cell dissemination and secondary tumor formation in distant target organs. They orchestrate tumor cell survival, growth and migration, tumor invasion and angiogenesis, and the formation of micrometastases in the bone marrow. The bone niche is of particular importance in metastasis formation, as it expresses high levels of CCL2 and CXCL12, which attract tumor cells and contribute to malignancy. The limited number of available effective treatment strategies highlights the need to better understand the pathophysiology of bone metastases and reduce the skeletal tumor burden in patients diagnosed with metastatic bone disease. This review focuses on the involvement of the CCL2/CCR2 and CXCL12/CXCR4 chemokine axes in the formation and development of bone metastases, as well as on therapeutic perspectives aimed at targeting these chemokine-receptor pairs.


Assuntos
Neoplasias Ósseas/imunologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Quimiocina CCL2/imunologia , Quimiocina CXCL12/imunologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Animais , Feminino , Humanos , Masculino
6.
J Med Chem ; 64(9): 5365-5383, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33750117

RESUMO

Incorporating small modifications to peptidic macrocycles can have a major influence on their properties. For instance, N-methylation has been shown to impact permeability. A better understanding of the relationship between permeability and structure is of key importance as peptidic drugs are often associated with unfavorable pharmacokinetic profiles. Starting from a semipeptidic macrocycle backbone composed of a tripeptide tethered head-to-tail with an alkyl linker, we investigated two small changes: peptide-to-peptoid substitution and various methyl placements on the nonpeptidic linker. Implementing these changes in parallel, we created a collection of 36 compounds. Their permeability was then assessed in parallel artificial membrane permeability assay (PAMPA) and Caco-2 assays. Our results show a systematic improvement in permeability associated with one peptoid position in the cycle, while the influence of methyl substitution varies on a case-by-case basis. Using a combination of molecular dynamics simulations and NMR measurements, we offer hypotheses to explain such behavior.


Assuntos
Compostos Macrocíclicos/química , Peptidomiméticos/química , Células CACO-2 , Permeabilidade da Membrana Celular/efeitos dos fármacos , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Compostos Macrocíclicos/metabolismo , Compostos Macrocíclicos/farmacologia , Espectroscopia de Ressonância Magnética , Metilação , Conformação Molecular , Simulação de Dinâmica Molecular , Peptidomiméticos/metabolismo , Peptidomiméticos/farmacologia
7.
Neurosci Biobehav Rev ; 125: 168-192, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33582232

RESUMO

Chronic pain is a major global health issue that affects all populations regardless of sex, age, ethnicity/race, or country of origin, leading to persistent physical and emotional distress and to the loss of patients' autonomy and quality of life. Despite tremendous efforts in the elucidation of the mechanisms contributing to the pathogenesis of chronic pain, the identification of new potential pain targets, and the development of novel analgesics, the pharmacological treatment options available for pain management remain limited, and most novel pain medications have failed to achieve advanced clinical development, leaving many patients with unbearable and undermanaged pain. Sex-specific susceptibility to chronic pain conditions as well as sex differences in pain sensitivity, pain tolerance and analgesic efficacy are increasingly recognized in the literature and have thus prompted scientists to seek mechanistic explanations. Hence, recent findings have highlighted that the signaling mechanisms underlying pain hypersensitivity are sexually dimorphic, which sheds light on the importance of conducting preclinical and clinical pain research on both sexes and of developing sex-specific pain medications. This review thus focuses on the clinical and preclinical evidence supporting the existence of sex differences in pain neurobiology. Attention is drawn to the sexually dimorphic role of glial and immune cells, which are both recognized as key players in neuroglial maladaptive plasticity at the origin of the transition from acute pain to chronic pathological pain. Growing evidence notably attributes to microglial cells a pivotal role in the sexually dimorphic pain phenotype and in the sexually dimorphic analgesic efficacy of opioids. This review also summarizes the recent advances in understanding the pathobiology underpinning the development of pain hypersensitivity in both males and females in different types of pain conditions, with particular emphasis on the mechanistic signaling pathways driving sexually dimorphic pain responses.


Assuntos
Dor , Qualidade de Vida , Analgésicos Opioides , Feminino , Humanos , Masculino , Neuroglia , Dor/tratamento farmacológico , Caracteres Sexuais
8.
J Med Chem ; 64(9): 5345-5364, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33524256

RESUMO

Side-chain-constrained amino acids are useful tools to modulate the biological properties of peptides. In this study, we applied side-chain constraints to apelin-13 (Ape13) by substituting the Pro12 and Phe13 positions, affecting the binding affinity and signaling profile on the apelin receptor (APJ). The residues 1Nal, Trp, and Aia were found to be beneficial substitutions for Pro12, and the resulting analogues displayed high affinity for APJ (Ki 0.08-0.18 nM vs Ape13 Ki 0.7 nM). Besides, constrained (d-Tic) or α,α-disubstituted residues (Dbzg; d-α-Me-Tyr(OBn)) were favorable for the Phe13 position. Compounds 47 (Pro12-Phe13 replaced by Aia-Phe, Ki 0.08 nM) and 53 (Pro12-Phe13 replaced by 1Nal-Dbzg, Ki 0.08 nM) are the most potent Ape13 analogues activating the Gα12 pathways (53, EC50 Gα12 2.8 nM vs Ape13, EC50 43 nM) known to date, displaying high affinity, resistance to ACE2 cleavage as well as improved pharmacokinetics in vitro (t1/2 5.8-7.3 h in rat plasma) and in vivo.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Receptores de Apelina/química , Receptores de Apelina/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/química , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Meia-Vida , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Ligação Proteica , Estabilidade Proteica , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
9.
J Med Chem ; 64(4): 2110-2124, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33538583

RESUMO

Neurotensin (NT) receptor type 2 (NTS2) represents an attractive target for the development of new NT-based analgesics. Here, we report the synthesis and functional in vivo characterization of the first constrained NTS2-selective macrocyclic NT analog. While most chemical optimization studies rely on the NT(8-13) fragment, we focused on NT(7-12) as a scaffold to design NTS2-selective macrocyclic peptides. Replacement of Ile12 by Leu, and Pro7/Pro10 by allylglycine residues followed by cyclization via ring-closing metathesis led to macrocycle 4, which exhibits good affinity for NTS2 (50 nM), high selectivity over NTS1 (>100 µM), and improved stability compared to NT(8-13). In vivo profiling in rats reveals that macrocycle 4 produces potent analgesia in three distinct rodent pain models, without causing the undesired effects associated with NTS1 activation. We further provide evidence of its non-opioid antinociceptive activity, therefore highlighting the strong therapeutic potential of NTS2-selective analogs for the management of acute and chronic pain.


Assuntos
Analgésicos/uso terapêutico , Neurotensina/análogos & derivados , Neurotensina/uso terapêutico , Dor/tratamento farmacológico , Peptídeos Cíclicos/uso terapêutico , Receptores de Neurotensina/metabolismo , Analgésicos/síntese química , Animais , Desenho de Fármacos , Masculino , Estrutura Molecular , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/uso terapêutico , Peptídeos Cíclicos/síntese química , Ratos Sprague-Dawley , Relação Estrutura-Atividade
10.
J Med Chem ; 64(1): 602-615, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33350824

RESUMO

ELABELA (ELA) is the second endogenous ligand of the apelin receptor (APJ). Although apelin-13 and ELA both target APJ, there is limited information on structure-activity relationship (SAR) of ELA. In the present work, we identified the shortest bioactive C-terminal fragment ELA23-32, which possesses high affinity for APJ (Ki 4.6 nM) and produces cardiorenal effects in vivo similar to those of ELA. SAR studies on conserved residues (Leu25, His26, Val29, Pro30, Phe31, Pro32) show that ELA and apelin-13 may interact differently with APJ. His26 and Val29 emerge as important for ELA binding. Docking and binding experiments suggest that Phe31 of ELA may bind to a tight groove distinct from that of Phe13 of Ape13, while the Phe13 pocket may be occupied by Pro32 of ELA. Further characterization of signaling profiles on the Gαi1, Gα12, and ß-arrestin2 pathways reveals the importance of aromatic residue at the Phe31 or Pro32 position for receptor activation.


Assuntos
Receptores de Apelina/agonistas , Hormônios Peptídicos/farmacologia , Sequência de Aminoácidos , Animais , Receptores de Apelina/metabolismo , Sítios de Ligação , Pressão Sanguínea/efeitos dos fármacos , Biologia Computacional , Coração/efeitos dos fármacos , Coração/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Ligantes , Masculino , Hormônios Peptídicos/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
11.
Pharmaceuticals (Basel) ; 13(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003415

RESUMO

The blood-brain barrier (BBB) is a major obstacle to the development of effective diagnostics and therapeutics for brain cancers and other central nervous system diseases. Peptide agonist analogs of kinin B1 and B2 receptors, acting as BBB permeabilizers, have been utilized to overcome this barrier. The purpose of the study was to provide new insights for the potential utility of kinin analogs as brain drug delivery adjuvants. In vivo imaging studies were conducted in various animal models (primary/secondary brain cancers, late radiation-induced brain injury) to quantify BBB permeability in response to kinin agonist administrations. Results showed that kinin B1 (B1R) and B2 receptors (B2R) agonists increase the BBB penetration of chemotherapeutic doxorubicin to glioma sites, with additive effects when applied in combination. B2R agonist also enabled extravasation of high-molecular-weight fluorescent dextrans (155 kDa and 2 MDa) in brains of normal mice. Moreover, a systemic single dose of B2R agonist did not increase the incidence of metastatic brain tumors originating from circulating breast cancer cells. Lastly, B2R agonist promoted the selective delivery of co-injected diagnostic MRI agent Magnevist in irradiated brain areas, depicting increased vascular B2R expression. Altogether, our findings suggest additional evidence for using kinin analogs to facilitate specific access of drugs to the brain.

12.
Data Brief ; 31: 105884, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32637491

RESUMO

Neurotensin (NT) is a tridecapeptide displaying interesting antinociceptive properties through its action on its receptors, NTS1 and NTS2. Neurotensin-like compounds have been shown to exert better antinociceptive properties than morphine at equimolar doses. In this article, we characterized the molecular effects of a novel neurotensin (8-13) (NT(8-13)) analog containing an unnatural amino acid. This compound, named JMV2009, displays a Silaproline in position 10 in replacement of a proline in the native NT(8-13). We first examined the binding affinities of this novel NT(8-13) derivative at both NTS1 and NTS2 receptor sites by performing competitive displacement of iodinated NT on purified cell membranes. Then, we evaluated the ability of JMV2009 to activate NTS1-related G proteins as well as to promote the recruitment of ß-arrestins 1 and 2 by using BRET-based cellular assays in live cells. We next assessed its ability to induce p42/p44 MAPK phosphorylation and NT receptors internalization using western blot and cell-surface ELISA, respectively. Finally, we determined the in vitro plasma stability of this NT derivative. This article is associated with the original article "Pain relief devoid of opioid side effects following central action of a silylated neurotensin analog" published in European Journal of Pharmacology[1]. The reader is directed to the associated article for results interpretation, comments, and discussion.

13.
Eur J Pharmacol ; 882: 173174, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32534076

RESUMO

Neurotensin (NT) exerts naloxone-insensitive antinociceptive action through its binding to both NTS1 and NTS2 receptors and NT analogs provide stronger pain relief than morphine on a molecular basis. Here, we examined the analgesic/adverse effect profile of a new NT(8-13) derivative denoted JMV2009, in which the Pro10 residue was substituted by a silicon-containing unnatural amino acid silaproline. We first report the synthesis and in vitro characterization (receptor-binding affinity, functional activity and stability) of JMV2009. We next examined its analgesic activity in a battery of acute, tonic and chronic pain models. We finally evaluated its ability to induce adverse effects associated with chronic opioid use, such as constipation and analgesic tolerance or related to NTS1 activation, like hypothermia. In in vitro assays, JMV2009 exhibited high binding affinity for both NTS1 and NTS2, improved proteolytic resistance as well as agonistic activities similar to NT, inducing sustained activation of p42/p44 MAPK and receptor internalization. Intrathecal injection of JMV2009 produced dose-dependent antinociceptive responses in the tail-flick test and almost completely abolished the nociceptive-related behaviors induced by chemical somatic and visceral noxious stimuli. Likewise, increasing doses of JMV2009 significantly reduced tactile allodynia and weight bearing deficits in nerve-injured rats. Importantly, repeated agonist treatment did not result in the development of analgesic tolerance. Furthermore, JMV2009 did not cause constipation and was ineffective in inducing hypothermia. These findings suggest that NT drugs can act as an effective opioid-free medication for the management of pain or can serve as adjuvant analgesics to reduce the opioid adverse effects.


Assuntos
Analgésicos/uso terapêutico , Neurotensina/análogos & derivados , Neurotensina/uso terapêutico , Dor/tratamento farmacológico , Receptores de Neurotensina/agonistas , Analgésicos/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Motilidade Gastrointestinal/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Masculino , Neurotensina/farmacologia , Dor/fisiopatologia , Ratos Sprague-Dawley , Receptores de Neurotensina/fisiologia
14.
Eur J Pharmacol ; 848: 80-87, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30707956

RESUMO

Opioid and neurotensin (NT) receptors are expressed in both central and peripheral nervous systems where they modulate nociceptive responses. Nowadays, opioid analgesics like morphine remain the most prescribed drugs for the treatment of moderate to severe pain. However, despite their daily used, opioids can produce life-threatening side effects, such as constipation or respiratory depression. Besides, NT analogs exert strong opioid-independent analgesia. Here, we thus hypothesized that the combined use of opioid and NT agonists would require lower doses to produce significant analgesic effects, hence decreasing opioid-induced adverse effects. We used isobologram analyses to determine if the combination of a NT brain-penetrant analog, An2-NT(8-13) with morphine results in an inhibitory, synergistic or additive analgesic response. We found that intravenous administration of An2-NT(8-13) reduced by 90% the nocifensive behaviors induced by formalin injection, at the dose of 0.018 mg/kg. Likewise, subcutaneous morphine reduced pain by 90% at 1.8 mg/kg. Importantly, isobologram analyses revealed that the co-injection of An2-NT(8-13) with morphine induced an additive analgesic response. We finally assessed the effects of morphine and An2-NT(8-13) on the gastrointestinal tract motility using the charcoal meal test. As opposed to morphine which significantly reduced the intestinal motility at the analgesic effective dose of 1.8 mg/kg, An2-NT(8-13) did not affect the charcoal meal intestinal transit at 0.018 mg/kg. Interestingly, at the dose providing 90% pain relief, the co-administration of morphine with An2-NT(8-13) had a reduced effect on constipation. Altogether, these results suggest that combining NT agonists with morphine may improve its analgesic/adverse effect ratio.


Assuntos
Analgésicos Opioides/administração & dosagem , Neurotensina/administração & dosagem , Medição da Dor/efeitos dos fármacos , Fragmentos de Peptídeos/administração & dosagem , Peptídeos/administração & dosagem , Receptores de Neurotensina/agonistas , Receptores Opioides mu/agonistas , Animais , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Masculino , Morfina/administração & dosagem , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Receptores de Neurotensina/metabolismo , Receptores Opioides mu/metabolismo
15.
J Cell Physiol ; 234(3): 2851-2865, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30132865

RESUMO

High nuclear expression of G protein-coupled receptors, including kinin B1 receptors (B1R), has been observed in several human cancers, but the clinical significance of this is unknown. We put forward the hypothesis that these "nuclearized" kinin B1R contribute to tumorigenicity and can be a new target in anticancer strategies. Our initial immunostaining and ultrastructural electron microscopy analyses demonstrated high B1R expression predominantly located at internal/nuclear compartments in the MDA-MB-231 triple-negative breast cancer (TNBC) cell line as well as in clinical samples of patients with TNBC. On the basis of these findings, in the present study, we evaluated the anticancer therapeutic potential of newly identified, cell-permeable B1R antagonists in MDA-MB-231 cells (ligand-receptor binding/activity assays and LC-MS/MS analyses). We found that these compounds (SSR240612, NG67, and N2000) were more toxic to MDA-MB-231 cells in comparison with low- or non-B1R expressing MCF-10A normal human mammary epithelial cells and COS-1 cells, respectively (clonogenic, MTT proliferative/cytocidal assays, and fluorescence-activated cell-sorting (FACS)-based apoptosis analyses). By comparison, the peptide B1R antagonist R954 unable to cross cell membrane failed to produce anticancer effects. Furthermore, the putative mechanisms underlying the anticancer activities of cell-penetrant B1R antagonists were assessed by analyzing cell cycle regulation and signaling molecules related to cell survival and apoptosis (FACS and western blot). Finally, drug combination experiments showed that cell-penetrant B1R antagonists can cooperate with suboptimal doses of chemotherapeutic agents (doxorubicin and paclitaxel) to promote TNBC death. This study provides evidence on the potential value of internally acting kinin B1R antagonists in averting growth of breast cancer.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Receptor B1 da Bradicinina/genética , Receptores Acoplados a Proteínas G/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Antagonistas de Receptor B1 da Bradicinina/farmacologia , Células COS , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/genética , Chlorocebus aethiops , Doxorrubicina/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Paclitaxel/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
16.
Pharmacol Res ; 131: 7-16, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29530600

RESUMO

The apelinergic system is an important player in the regulation of both vascular tone and cardiovascular function, making this physiological system an attractive target for drug development for hypertension, heart failure and ischemic heart disease. Indeed, apelin exerts a positive inotropic effect in humans whilst reducing peripheral vascular resistance. In this study, we investigated the signaling pathways through which apelin exerts its hypotensive action. We synthesized a series of apelin-13 analogs whereby the C-terminal Phe13 residue was replaced by natural or unnatural amino acids. In HEK293 cells expressing APJ, we evaluated the relative efficacy of these compounds to activate Gαi1 and GαoA G-proteins, recruit ß-arrestins 1 and 2 (ßarrs), and inhibit cAMP production. Calculating the transduction ratio for each pathway allowed us to identify several analogs with distinct signaling profiles. Furthermore, we found that these analogs delivered i.v. to Sprague-Dawley rats exerted a wide range of hypotensive responses. Indeed, two compounds lost their ability to lower blood pressure, while other analogs significantly reduced blood pressure as apelin-13. Interestingly, analogs that did not lower blood pressure were less effective at recruiting ßarrs. Finally, using Spearman correlations, we established that the hypotensive response was significantly correlated with ßarr recruitment but not with G protein-dependent signaling. In conclusion, our results demonstrated that the ßarr recruitment potency is involved in the hypotensive efficacy of activated APJ.


Assuntos
Anti-Hipertensivos/farmacologia , Receptores de Apelina/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , beta-Arrestinas/metabolismo , Animais , Anti-Hipertensivos/química , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Hipotensão/tratamento farmacológico , Hipotensão/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/química , Masculino , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Oncotarget ; 9(11): 9885-9906, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29515778

RESUMO

G protein-coupled receptors (GPCRs) are integral cell-surface proteins having a central role in tumor growth and metastasis. However, several GPCRs retain an atypical intracellular/nuclear location in various types of cancer. The pathological significance of this is currently unknown. Here we extend this observation by showing that the bradykinin B2R (BK-B2R) is nuclearly expressed in the human triple-negative breast cancer (TNBC) cell line MDA-MB-231 and in human clinical specimens of TNBC. We posited that these "nuclearized" receptors could be involved in oncogenic signaling linked to aberrant growth and survival maintenance of TNBC. We used cell-penetrating BK-B2R antagonists, including FR173657 and novel transducible, cell-permeable forms of the peptide B2R antagonist HOE 140 (NG68, NG134) to demonstrate their superior efficacy over impermeable ones (HOE 140), in blocking proliferation and promoting apoptosis of MDA-MB-231 cells. Some showed an even greater antineoplastic activity over conventional chemotherapeutic drugs in vitro. The cell-permeable B2R antagonists had less to no anticancer effects on B2R shRNA-knockdown or non-B2R expressing (COS-1) cells, indicating specificity in their action. Possible mechanisms of their anticancer effects may involve activation of p38kinase/p27Kip1 pathways. Together, our data support the existence of a possible intracrine signaling pathway via internal/nuclear B2R, critical for the growth of TNBC cells, and identify new chemical entities that enable to target the corresponding intracellular GPCRs.

18.
J Med Chem ; 61(6): 2266-2277, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29461833

RESUMO

The apelin receptor generates increasing interest as a potential target across several cardiovascular indications. However, the short half-life of its cognate ligands, the apelin peptides, is a limiting factor for pharmacological use. In this study, we systematically explored each position of apelin-13 to find the best position to cyclize the peptide, with the goal to improve its stability while optimizing its binding affinity and signaling profile. Macrocyclic analogues showed a remarkably higher stability in rat plasma (half-life >3 h versus 24 min for Pyr-apelin-13), accompanied by improved affinity (analogue 15, Ki 0.15 nM and t1/2 6.8 h). Several compounds displayed higher inotropic effects ex vivo in the Langendorff isolated heart model in rats (analogues 13 and 15, maximum response at 0.003 nM versus 0.03 nM of apelin-13). In conclusion, this study provides stable and active compounds to better characterize the pharmacology of the apelinergic system.


Assuntos
Azetidinas/síntese química , Peptídeos e Proteínas de Sinalização Intercelular/síntese química , Monoacilglicerol Lipases/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/síntese química , Animais , Azetidinas/farmacocinética , Encéfalo/diagnóstico por imagem , Encéfalo/enzimologia , Encéfalo/metabolismo , Radioisótopos de Carbono , Radioisótopos de Flúor , Peptídeos e Proteínas de Sinalização Intercelular/farmacocinética , Macaca mulatta , Masculino , Camundongos , Traçadores Radioativos , Compostos Radiofarmacêuticos/farmacocinética , Ratos Sprague-Dawley , Especificidade por Substrato , Distribuição Tecidual
19.
Crit Care Med ; 45(11): e1139-e1148, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28777197

RESUMO

OBJECTIVES: Apelin-13 was recently proposed as an alternative to the recommended ß-adrenergic drugs for supporting endotoxin-induced myocardial dysfunction. Since Apelin-13 signals through its receptor (Apelin peptide jejunum) to exert singular inotropic/vasotropic actions and to optimize body fluid balance, this candidate pathway might benefit septic shock management. Whether the newly discovered ELABELA (ELA), a second endogenous ligand of the Apelin peptide jejunum receptor highly expressed in the kidney, further improves cardio-renal impairment remains unknown. DESIGN, SETTING, AND SUBJECTS: Interventional study in a rat model of septic shock (128 adult males) to assess the effects of ELA and Apelin-13 on vascular and cardio-renal function. Experiments were performed in a tertiary care University-based research institute. INTERVENTIONS: Polymicrobial sepsis-induced cardiac dysfunction was produced by cecal ligation puncture to assess hemodynamic efficacy, cardioprotection, and biomechanics under acute or continuous infusions of the apelinergic agonists ELA or Apelin-13 (39 and 15 µg/kg/hr, respectively) versus normal saline. MEASUREMENTS AND MAIN RESULTS: Apelinergic agonists improved 72-hour survival after sepsis induction, with ELA providing the best clinical outcome after 24 hours. Apelinergic agonist infusion counteracted cecal ligation puncture-induced myocardial dysfunction by improving left ventricular pressure-volume relationship. ELA-treated cecal ligation puncture rats were the only group to 1) display a significant improvement in left ventricular filling as shown by increased E-wave velocity and left ventricular end-diastolic volume, 2) exhibit a higher plasma volume, and 3) limit kidney injury and free-water clearance. These beneficial renal effects were superior to Apelin-13, likely because full-length ELA enabled a distinctive regulation of pituitary vasopressin release. CONCLUSIONS: Activation of the apelinergic system by exogenous ELA or Apelin-13 infusion improves cardiovascular function and survival after cecal ligation puncture-induced sepsis. However, ELA proved better than Apelin-13 by improving fluid homeostasis, cardiovascular hemodynamics recovery, and limiting kidney dysfunction in a vasopressinergic-dependent manner.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Hormônios Peptídicos/farmacologia , Choque Séptico/tratamento farmacológico , Animais , Biomarcadores , Citocinas/imunologia , Modelos Animais de Doenças , Ecocardiografia , Hemodinâmica/efeitos dos fármacos , Masculino , Ratos , Reação em Cadeia da Polimerase em Tempo Real
20.
Org Biomol Chem ; 15(2): 449-458, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27924341

RESUMO

Apelin is the endogenous ligand for the G protein-coupled receptor APJ and exerts a key role in regulating cardiovascular functions. We report herein a novel series of macrocyclic analogues of apelin-13 in which the N- and C-terminal residues as well as the macrocycle composition were chemically modified to modulate structure-activity relationships on the APJ receptor. To this end, the binding affinity and the ability to engage G protein-dependent and G protein-independent signalling pathways of the resulting analogues were assessed. In this series, the position and the nature of the C-terminal aromatic residue is a determinant for APJ interaction and ß-arrestin recruitment, as previously demonstrated for linear apelin-13 derivatives. We finally discovered compounds 1, 4, 11 and 15, four potent G protein-biased apelin receptor agonists exhibiting affinity in the nanomolar range for APJ. These macrocyclic compounds represent very useful pharmacological tools to explore the therapeutic potential of the apelinergic system.


Assuntos
Receptores de Apelina/agonistas , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Compostos Macrocíclicos/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Peptídeos e Proteínas de Sinalização Intercelular/síntese química , Peptídeos e Proteínas de Sinalização Intercelular/química , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Masculino , Conformação Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...